Full-waveform static corrections using blind channel identification

Author:

van Vossen Robbert12,Trampert Jeannot12

Affiliation:

1. Formerly Utrecht University, Department of Earth Sciences, Utrecht, The Netherlands; presently Netherlands Organization for Applied Scientific Research, The Hague, the Netherlands. .

2. Utrecht University, Department of Earth Sciences, Utrecht, the Netherlands. .

Abstract

Near-surface wavefield perturbations can be very complex and completely mask the target reflections. Despite this complexity, conventional methods rely on parameterizations characterized by simple time and amplitude anomalies to compensate for these perturbations. Determining and compensating for time shifts is generally referred to as (residual) static corrections, whereas surface-consistent deconvolution techniques deal with amplitude anomalies. We present an approach that uses the full waveform to parameterize near-surface perturbations. Therefore, we refer to this method as waveform statics. Important differences from conventional static corrections are that this approach allows time shifts to vary with frequency and takes amplitude variations directly into account. Furthermore, the procedure is fully automated and does not rely on near-surface velocity information. The waveform static corrections are obtained usingblind channel identification and applied to the recordings using multichannel deconvolution. As a result, the method implicitly incorporates array forming. The developed method is validated on synthetic data and applied to part of a field data set acquired in an area with significant near-surface heterogeneity. The source and receiver responses obtained are strongly correlated to the near-surface conditions and show changes, both in phase and frequency content, along the spread. The application of the waveform statics demonstrates that they not only correct for near-surface wavefield perturbations, but also strongly reduce coherent noise. This results in substantial improvements, both in trace-to-trace coherency and in depth resolution. In addition, the procedure delineates reflection events that are difficult to detect prior to our proposed correction. Based on these results, we conclude that complex near-surface perturbations can be successfully dealt with using the multichannel, full-waveform, static-correction procedure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3