Acoustic modes of propagation in the borehole and their relationship to rock properties

Author:

Paillet F. L.1,White J. E.2

Affiliation:

1. U.S. Geological Survey, Box 25046, MS 403, Denver Federal Center, Denver, CO 80225

2. Colorado School of Mines, Golden, CO 80401

Abstract

Acoustic waveform measurements in boreholes have important applications in fracture hydrology and radioactive waste disposal, but ambiguities in existing interpretation techniques remain a problem. We have addressed the problem by using residue theory to predict the relative excitation of various modes contained in experimental waveforms. A plane‐geometry model involving a layer of fluid between two elastic half‐spaces is shown to provide velocity dispersion curves for propagating modes that are very similar to those for the fluid‐filled borehole. We use the plane‐geometry model to illustrate the effects of the confined borehole fluid on surface and body waves traveling along the borehole in the elastic solid. We also computed excitation functions for some of the lowest‐order symmetric modes, calculated the time‐domain response of the trapped modes following the shear head waves, and compared them to waveforms recorded in boreholes through several homogeneous formations. The insight into the mode composition of the experimental waveforms obtained in these formations is used to construct amplitude logs that should be especially sensitive to variations in the presence of fluid‐filled fractures in the borehole wall. Initial tests show the technique is most successful when the waveform is dominated by the fundamental tube wave, and yet frequencies remain relatively high. The model analysis indicates these conditions can only be obtained when the borehole diameter is not much larger than that of the logging tool.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3