1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2016, TensorFlow: Large-scale machine learning on heterogeneous distributed systems: Technical report.
2. Ahmed, A., A. Cosse, and L. Demanet, 2015, A convex approach to blind deconvolution with diverse inputs: IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Institute of Electrical and Electronics Engineers Inc., 5–8.
3. Focused Blind Deconvolution
4. Wave propagation simulation in a linear viscoacoustic medium
5. Chen, T. Q., X. Li, R. Grosse, and D. Duvenaud, 2018, Isolating sources of disentanglement in variational autoencoders: 6th International Conference on Learning Representations, ICLR.