Overcoming Gassmann's equation limitations in reservoir rocks

Author:

Allo Fabien1,Vernik Lev2

Affiliation:

1. CGG, Calgary, Alberta, Canada..

2. University of Houston, Houston, Texas, USA..

Abstract

Velocities of low-frequency seismic waves and, in most rocks, sonic logging waves depend on the compressibility of the undrained rock, which is conventionally computed from the drained rock compressibility using Gassmann's equation. Although more comprehensive and accurate alternatives exist, the simplicity of the equation has made it the preferred fluid substitution model for geoscience applications. In line with recent publications, we show that Gassmann's equation strictly applies only to rocks with a microhomogeneous void space microstructure that is devoid of cracks and microcracks. We use a rock physics model that separates the respective compliance contributions of pores and cracks on dry (drained) moduli and show that Gassmann's model does not apply to rocks with measurable crack density. A fourth independent bulk modulus (in addition to the bulk moduli of the mineral matrix, dry frame, and saturating fluid) is required to take the effect of cracks into account and perform fluid substitution modeling for rocks with pores and cracks more accurately than prescribed by Gassmann's equation. Therefore, we propose combining the Vernik-Kachanov model with Brown-Korringa's equation for more reliable modeling of undrained bulk compressibility for reservoir rocks with measurable crack density. To conclude, a practical quantification of the applicability of Gassmann's equation based on the combined effects of crack density and stress sensitivity is proposed.

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3