Two‐dimensional modeling of a towed in‐line electric dipole‐dipole sea‐floor electromagnetic system: The optimum time delay or frequency for target resolution

Author:

Edwards R. N.1

Affiliation:

1. Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093

Abstract

Towed in‐line transient electric dipole‐dipole systems are being used to map the electrical conductivity of the sea floor. The characteristic response of a double half‐space model representing conductive seawater and less conductive crustal material to a dipole‐dipole system located at the interface consists of two distinct parts. As time in the transient measurements progresses, two changes in field strength are observed. The first change is caused by the diffusion of the electromagnetic field through the resistive sea floor; the second is caused by diffusion through the seawater. The characteristic times at which the two events occur are measures of sea‐floor and seawater conductivity, respectively. Entirely equivalent responses are observed in a frequency‐domain measurement as frequency is swept from high to low. The simple double half‐space response is modified when the towed array crosses over a conductivity anomaly. I evaluate the magnitude of the anomalous response as a function of delay time and frequency using a two‐dimensional theory and a vertical, plate‐like target. If the ratio of the conductivity of the seawater to that of the sea floor is greater than unity, then an optimum time delay or frequency can be found which maximizes the response. For large conductivity contrasts, the optimum response is greater than the response at late time or zero frequency by a factor of the order of the conductivity ratio.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins;International Journal of Greenhouse Gas Control;2021-03

2. Talbot Algorithm with a Trapezoidal Wave in the 2.5D Airborne Transient Electromagnetic Method in Marine Investigations;Applied Sciences;2020-03-06

3. Introduction to Controlled-Source Electromagnetic Methods;2019-03-07

4. Plate Section;Introduction to Controlled-Source Electromagnetic Methods;2019-03-07

5. Index;Introduction to Controlled-Source Electromagnetic Methods;2019-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3