Seismic inversion for density using a transdimensional approach

Author:

Biswas Reetam12,Kumar Dhananjay2,Sen Mrinal K.1

Affiliation:

1. University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Institute for Geophysics and Department of Geological Sciences, Austin, Texas, USA..

2. BP, Houston, Texas, USA..

Abstract

Commercial and low-saturation gas (also called paleoresidual gas [PRG]) show similar strong amplitude signatures on P-wave seismic data. This poses an exploration risk in gas reservoir regions. However, density correlates inversely with gas saturation and can differentiate a zone of full gas saturation from PRG. This can improve the chances of success in terms of predrill prediction of gas saturation. Amplitude-variation-with-offset (AVO) inversion using prestack seismic data is the most commonly used technique that can estimate elastic parameters such as P-wave velocity, S-wave velocity, and density. Out of these three parameters, extracting density from seismic data is the most challenging due to its weak sensitivity to seismic reflection amplitude and the lack of good quality seismic data at far offsets. However, with recent improvements in seismic data acquisition and processing technology, which produces reliable AVO gathers, density estimates have improved. This requires that strong density sensitivity to AVO exists. Note that multiple density models may fit the data equally well. Therefore, quantifying uncertainty is crucial for interpretation and risk assessment. We apply a recently developed stochastic approach based on the Bayesian framework to solve the problem in a transdimensional framework, where the number of model parameters is treated as a variable and estimated along with the elastic properties. We use the reversible jump Hamiltonian Monte Carlo (RJHMC) algorithm to sample models from a variable dimensional model space and obtain a globally optimum model and uncertainty estimates. We use a synthetic and good quality real data set from Columbus Basin in Trinidad, which has a proven gas reservoir, to demonstrate the algorithm. The RJHMC results calibrate well with the logs and show the areal extents of the density anomalies within the 3D volume.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference37 articles.

1. Local three-dimensional earthquake tomography by trans-dimensional Monte Carlo sampling

2. Density extraction from P-wave AVO inversion: Tuscaloosa Trend example

3. Biswas, R., and M. K. Sen, 2022, Transdimensional 2D full-waveform inversion and uncertainty estimation: arXiv:2201.09334.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3