Open-source software for two-dimensional Fourier processing of gridded magnetic data

Author:

Smith Richard S.1,Roots Eric A.1,Rainsford Desmond2

Affiliation:

1. Laurentian University, Harquail School of Earth Sciences, Sudbury, Ontario, Canada..

2. Formerly Ontario Geological Survey, Sudbury, Ontario, Canada..

Abstract

Magnetic data are widely available and useful in many exploration and applied-geophysics projects. The magnetic data are usually processed, imaged, and interpreted in commercial software packages. The algorithms used in these packages are sometimes difficult to check or tune, and the code is not available for review. However, these packages often have an application programming interface (API) for people to access data and undertake their own processing and data enhancement. In many cases, these APIs use the Python programming language. In the course of developing a new method for transforming magnetic data called reduction to pole and vertical dip (RTPVD), the initial test code was written in Python. This initial code was then rewritten and incorporated into GAMS, an open-source software package capable of using a Python API to read from and then write transformed (or enhanced) data to a commercial database. In addition to RTPVD, the other enhancements GAMS can generate are the zeroth-order analytic-signal amplitude (ASA0), tilt, spatial derivatives of ASA0, the zeroth-order local wavenumber, the first-order analytic-signal amplitude, and the apparent susceptibility. These transformations require that the data be transformed to the wavenumber domain using a fast Fourier transform (FFT), operated on, and then transformed back to the space domain. The FFT and some of the preprocessing steps can be done with a number of built-in Python tools. For the preprocessing steps, some of the available Python options are fast, but they can occasionally introduce unwanted artifacts. Our open-source tool allows users to test the different options and check the intermediate steps to ensure the result is appropriate.

Funder

Government of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3