Fresnel zones and spatial resolution for P- and SH-waves in transversely isotropic media

Author:

Okoye Patrick N.1,Uren Norm F.1

Affiliation:

1. Curtin Univ. of Technology, Dept. of Exploration Geophysics, New Technologies Bldg., Kent Street, Bentley, Perth, Western Australia 6845, Australia

Abstract

In an elastically anisotropic medium where the seismic wave velocity is a function of direction, the wavefront shape is nonspherical and, in most cases, assumes a nonelliptical shape. Numerical modelling techniques have been used to calculate the Fresnel‐zone diameter for compressional (P) and shear (SH) waves in transversely isotropic and isotropic media, respectively. The size of the Fresnel zone is found to be predominantly dependent on the curvatures and wavelength of the wavefront as well as the dip angle of the reflector. In addition, the anisotropic elastic parameters δ* (critical near‐vertical anisotropy), ε (the P-wave anisotropy), and γ (the SH-wave anisotropy) are found to significantly affect the size of the Fresnel zone. Numerical modeling results show considerable differences between the Fresnel zones for anisotropic and isotropic velocity functions at various reflector dips. In addition, the Fresnel‐zone dimensions for anisotropic media exhibit asymmetry and considerable change with dip. By way of contrast, those of the corresponding isotropic velocity field exhibit symmetry and negligible variation with dip. The spatial resolution of unmigrated seismic data in an anisotropic medium would consequently be significantly different from that determined for the same medium if it is assumed to be isotropic. Physical modeling results demonstrate that anisotropy can significantly affect the spatial resolving power of seismic waves. The degree of these effects depends on the wavefront curvature, which changes with dip and orientation of the symmetry axis. This observation indicates that the spatial imaging of unmigrated reflection events from the base of thick shale sediments will be affected by anisotropy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference10 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3