Generalized effective-medium theory of induced polarization

Author:

Zhdanov Michael1

Affiliation:

1. University of Utah, Department of Geology and Geophysics, Salt Lake City, Utah, U.S.A. .

Abstract

A rigorous physical-mathematical model of heterogeneous conductive media is based on the effective-medium approach. A generalization of the classical effective-medium theory (EMT) consists of two major parts: (1) introduction of effective-conductivity models of heterogeneous, multiphase rock formations with inclusions of arbitrary shape and conductivity using the principles of the quasi-linear (QL) approximation within the framework of the EMT formalism and (2) development of the generalized effective-medium theory of induced polarization (GEMTIP), which takes into account electromagnetic-induction (EMI) and induced polarization (IP) effects related to the relaxation of polarized charges in rock formations. The new generalized EMT provides a unified mathematical model of heterogeneity, multiphase structure, and the polarizability of rocks. The geoelectric parameters of this model are determined by the intrinsic petrophysical and geometric characteristics of composite media: the mineralization and/or fluid content of rocks and the matrix composition, porosity, anisotropy, and polarizability of formations. The GEMTIP model allows one to find the effective conductivity of a medium with inclusions that have arbitrary shape and electrical properties. One fundamental IP model of an isotropic, multiphase, heterogeneous medium is filled with spherical inclusions. This model, because of its relative simplicity, makes it possible to explain the close relationships between the new GEMTIP conductivity-relaxation model and an empirical Cole-Cole model or classical Wait’s model of the IP effect.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3