Automated detection of planar geologic features in borehole images

Author:

Assous Said1,Elkington Peter1,Clark Stuart2,Whetton James1

Affiliation:

1. Weatherford, East Leake, Loughborough, UK..

2. BIOS Developments Ltd., Edinburgh, UK..

Abstract

The interpretation of borehole images begins with the detection and classification of features—a time-consuming manual process subject to variations between interpreters. In seeking to automate the detection part for the most frequently picked features (which in circumferential images from clastic rock environments are sinusoids corresponding to planar or subplanar bedding surfaces and fractures), it is not necessary to pick all instances, but it is necessary to pick sufficient representative instances to satisfy the interpretation objective, accounting for a broad range of apparent dips, and allowing for the likelihood of fractures crossing bedding surfaces. A key challenge in this context is the minimization of false picks, as manual corrections would potentially negate the principal benefit of automation. A fast nonsubjective method is described for the detection of prominent discontinuities and the calculation of associated dip angles. It combines a gradient based approach for edge detection with a phase congruency method for validation, followed by a robust sinusoid detection technique. It has been evaluated on microresistivity images from wireline and logging-while-drilling tools, these images having a wide range of features with varying degrees of geologic complexity; the proportion of false positives in the case of noisy data is less than 5%, improving to better than 2% in the case of good-quality data. In contrast to manual picking, the method is fast and gives reproducible results. With potentially thousands of sinusoids in a single image, the method dramatically improves efficiency.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference15 articles.

1. Microresistivity Image Inpainting and Visualization

2. A Hough transform-based method for fast detection of fixed period sinusoidal curves in images

3. Relations between the statistics of natural images and the response properties of cortical cells

4. An Implementation of the Hough Transformation for the Identification and Labelling of Fixed Period Sinusoidal Curves

5. Hall, J., M. Ponzi, M. Gonfalini, and G. Maletti, 1996, Automatic extraction and characterization of geological features and textures from borehole images and core photographs: Presented at the 37th Annual Logging Symposium, SPWLA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3