Azimuthal anisotropy in microseismic monitoring: A Bakken case study

Author:

Grechka Vladimir1,Yaskevich Sergey2

Affiliation:

1. Marathon Oil Company, Houston, Texas, USA..

2. Institute of Petroleum Geology and Geophysics, Novosibirsk, Russia..

Abstract

Hydraulic fracturing, routinely applied for enhancing the permeability of unconventional oil and gas reservoirs, is one of the possible causes for azimuthal anisotropy of the treated formations. Accounting for both naturally occurring and completion induced azimuthal anisotropy leads to marked improvements in the results of microseismic data processing. As illustrated on a data set acquired in the Bakken Field, North Dakota, USA, those improvements include the possibility of modeling the observed shear-wave splitting, reduction of misfit between the picked and modeled traveltimes of microseismic events, and relocation and tightening of the spatial distribution of the event hypocenters. In addition and perhaps most importantly for the development of microseismic technology, the feasibility of joint inversion of field microseismic data for the event locations and azimuthally anisotropic velocity model containing triclinic layers is demonstrated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3