Blind deconvolution of multichannel recordings by linearized inversion in the spectral domain

Author:

Behm Michael1,Shekar Bharath2

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA and University of Vienna, Department for Meteorology and Geophysics, Vienna, Austria..

2. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

Abstract

In seismology, blind deconvolution aims to recover the source wavelet and the Green’s function, or parts of it (e.g., reflectivity series), from a recorded seismic trace. A multitude of algorithms exist that tackle this ill-posed problem by different approaches. Making assumptions on the phase spectra of the source wavelet and/or the statistical distribution of the reflectivity series is useful for single trace. The nature of closely spaced multichannel recordings enables a better estimation of a common source wavelet and thus increases the confidence of the results. This approach has been exploited in the past, although different types of assumptions are used for a variety of algorithms. We introduced a new method for simultaneous reconstruction of arbitrary source wavelets and local vertical reflectivity series from teleseismic earthquakes. Closely spaced receivers record vertically incident earthquake body waves and their surface-related multiples, which comprise the unknown reflectivity series. By assuming a common source wavelet for all receivers, the observation of several events resulted in a set of convolution equations relating the unknown source wavelets and unknown reflectivity series to the observed seismic trace. The overdetermined system of equations was linearized and solved by conventional inversion algorithms in the spectral domain. Synthetic tests indicated a better performance of the introduced method than conventional deconvolution in the presence of white noise, which is attributed to the constraint of a common model for all observations. Application to field data from a local deployment allowed imaging a basement reflector from teleseismic body waves, although the data were contaminated with strong coherent noise. From a practical point of view, the presented method is potentially well suited for local and regional large-scale imaging from multichannel passive seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3