Cable arrangement to reduce electromagnetic coupling effects in spectral-induced polarization studies

Author:

Schmutz Myriam1,Ghorbani Ahmad2,Vaudelet Pierre1,Blondel Amélie3

Affiliation:

1. ENSEGID, Pessac, France..

2. Yazd University, Department of Mining and Metallurgical Engineering, Yazd, Iran..

3. ENSEGID, Pessac, France and Geoscope, Cenon, France..

Abstract

Spectral-induced polarization (SIP) is widely used for environmental and engineering geophysical prospecting and hydrogeophysics, but one major limitation concerns the electromagnetic (EM) coupling effect. The phase angles related to EM coupling may increase even at frequencies as low as 1 Hz, depending on the ground resistivity, the array type, and the geometry. Most efforts to understand and quantify the EM coupling problem (e.g., theory and computer codes) have been developed for dipole-dipole arrays. However, we used a Schlumberger array to acquire SIP data. We found that with this array, the use of an appropriate cable arrangement during data acquisition can reduce EM coupling effects in the same proportion as for the use of a dipole-dipole array, which is the pure response of the studied earth. To measure the influence of the cable layout, four cable configurations with the same electrode spacing were compared for modeling and experimental data. We discovered that the classical DC inline array was the worst one. As soon as the cables were arranged in another shape (triangle or rectangle), the coupling effect decreased significantly. The best configuration we checked was the rectangular one with an acquisition unit located at a lateral offset of 100 m from the electrode line, even if there was still some difference between the modeled and measured data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3