Affiliation:
1. U.S. Geological Survey, Denver, Colorado, USA..
2. Hunter Dickinson Inc., Vancouver, British Columbia, Canada,.
Abstract
We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the deposit, including shallow diorite sills that locally contain higher-grade mineralization. The results thus show ways in which an integrated survey approach might be used to distinguish zones of potentially economic mineralization.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference33 articles.
1. Geological Analysis of Aeromagnetic Data from Southwestern Alaska: Implications for Exploration in the Area of the Pebble Porphyry Cu-Au-Mo Deposit
2. U.S. Geological Survey Data Series;Anderson E. D.,2011
3. Bedrosian, P. A., A. K. Shah, E. D. Anderson, and K. D. Kelley, 2010, Geophysical investigations into the tectonic and magmatic evolution of the Kahiltna Terrane, SW Alaska: Geological Society of America Annual Meeting, 676.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献