A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale

Author:

Tan Maojin1,Liu Qiong2,Zhang Songyang3

Affiliation:

1. China University of Geosciences, Key Laboratory of Geo-detection, Ministry of Education, Beijing, China..

2. China University of Geosciences, School of Geophysics and Information Technology, Beijing, China..

3. SINOPEC Petroleum Exploration and Production Institute, Beijing, China..

Abstract

Total organic carbon (TOC) is an important parameter for characterizing shale gas and oil reservoirs. Estimation of TOC from well logs has previously been achieved by an empirical model. The radial basis function (RBF) neural network is a new quantitative method that can generate a smooth and continuous function of several input variables to approximate the unknown forward model. We investigated the basic principles of the RBF including network structure, basis function, network training method, and its application in the TOC prediction. The nearest neighbor algorithm was selected for the network training. Then, the Gaussian width was investigated to improve the TOC prediction accuracy through leave-one-out cross-validation. Finally, field cases of organic shale were studied for the TOC prediction, and the prediction results using the RBF method were compared with those of the [Formula: see text] method. Furthermore, according to sensitive attribute ranking, the impacts of different input logs on the predicted results were also investigated through various experiments, and the best network model was finally chosen. The error analysis between the prediction results and lab-measured TOC in some examples indicated that the new approach is more accurate than a single empirical regression method and more flexible than the [Formula: see text] method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3