Sensitivity analysis for the appraisal of hydrofractures in horizontal wells with borehole resistivity measurements

Author:

Pardo David1,Torres-Verdín Carlos2

Affiliation:

1. University of the Basque Country (UPV/EHU), Department of Applied Mathematics, Statistics, and Operational Research, Leioa, Spain; IKERBASQUE (Basque Foundation for Sciences), Bilbao, Spain..

2. The University of Texas at Austin, Austin, Texas, USA..

Abstract

We numerically evaluate the possibility of using borehole electromagnetic measurements to diagnose and quantify hydraulic fractures that have been artificially generated in a horizontal well. Hydrofractures are modeled as thin disks perpendicular to the well and filled with either sand-based or electrically conductive proppant. The study focuses on the effect of thickness and length (radius) of hydrofractures to assess their effects on specific configurations of borehole-resistivity instruments. Numerical results indicate that several measurements (e.g., those obtained with low- and high-frequency solenoids) could be used to assess the thickness of a fracture. However, only low-frequency measurements performed with electrodes and large-spacing between transmitter and receivers (18 m) exhibit the necessary sensitivity to reliably and accurately estimate the length of long hydrofractures (up to 150 m) in open-hole wells. In the case of steel-cased wells, the casing acts as a long electrode, whereby conventional low-frequency short-spaced, through-casing measurements are suitable for the accurate diagnosis of long hydrofractures (up to 150 m in length).

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3