Microseismic joint location and anisotropic velocity inversion for hydraulic fracturing in a tight Bakken reservoir

Author:

Li Junlun1,Li Chang2,Morton Scott A.2,Dohmen Ted2,Katahara Keith2,Nafi Toksöz M.1

Affiliation:

1. Massachusetts Institute of Technology, Earth Resources Laboratory, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, USA..

2. Hess Corporation, Houston, Texas, USA..

Abstract

To improve the accuracy of microseismic event locations, we developed a new inversion method with double-difference constraints for determining the hypocenters and the anisotropic velocity model for unconventional reservoirs. We applied this method to a microseismic data set monitoring a Middle Bakken completion in the Beaver Lodge area of North Dakota. Geophone arrays in four observation wells improved the ray coverage for the velocity inversion. Using an accurate anisotropic velocity model is important to correctly assess the height growth of the hydraulically induced fractures in the Middle Bakken. Our results showed that (1) moderate-to-strong anisotropy exists in all studied sedimentary layers, especially in the Upper and Lower Bakken shale formations, where the Thomsen parameters ([Formula: see text] and [Formula: see text]) can be greater than 0.4, (2) all the events selected for high signal-to-noise ratio and used for the joint velocity inversion are located in the Bakken and overlying Lodgepole formations, i.e., no events are detected in the Three Forks formation below the Bakken, and (3) more than half of the strong events are in two clusters at approximately 100 and 150 m above the Middle Bakken. Reoccurrence of strong, closely clustered events suggested activation of natural fractures or faults in the Lodgepole formation. The sensitivity analysis for the inversion results showed that the relative uncertainty in parameter [Formula: see text] is larger than other anisotropy parameters. The microseismic event locations and the anisotropic velocity model are validated by comparing synthetic and observed seismic waveforms and by S-wave splitting.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3