Microresistivity borehole image inpainting

Author:

Assous Said1,Elkington Peter1,Whetton James1

Affiliation:

1. Weatherford, East Leake, UK..

Abstract

Images rendered from measurements made by wireline microresistivity imaging tools include longitudinal gaps whenever the well circumference exceeds the total width of the pad-mounted electrode arrays. The fraction of an image containing null data depends on tool design, and it is commonly approximately 30% for 261 mm (8.5 in.)-bit size wells increasing to approximately 50% in 311 mm (12.25 in.) wells. We use cues from the measured parts to infer information missing from the gaps; a method has been developed that simulates the process by decomposing the measured parts into their morphological components using sparse representations of multiscale multiorientation transforms, then recomposing the full-bore image assuming it to be efficiently represented by the transform’s elemental bases. The approach was evaluated using real data sets with a variety of geologic features, including full-coverage images from small diameter wells artificially obscured to simulate images from larger diameter wells. For borehole images dominated by curvilinear features, reconstructions from artificially obscured images were visually indistinguishable from the original unobscured images for a broad range of coverage loss and for all apparent dip angles below near-vertical, regardless of degree of parallelism (or lack thereof). Successful reconstruction of near-vertical features (including those with complex boundaries such as breakouts) was more dependent on coverage loss, but in these cases, the results were consistent with judgments made by interpreters. Therefore, we found that inpainting provides a consistent starting point for reproducible quantitative geologic analysis, and it is an enabler for automated feature recognition.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3