Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction

Author:

Kreimer Nadia1,Stanton Aaron1,Sacchi Mauricio D.1

Affiliation:

1. University of Alberta, Department of Physics, Edmonton, Canada..

Abstract

Many standard seismic data processing and imaging techniques require regularly sampled data. Prestack seismic data are multidimensional signals that can be represented via low-rank fourth-order tensors in the [Formula: see text] domain. We propose to adopt tensor completion strategies to recover unrecorded observations and to improve the signal-to-noise ratio of prestack seismic volumes. Tensor completion can be posed as an inverse problem and solved by minimizing a convex objective function. The objective function contains two terms: a data misfit and a nuclear norm. The data misfit measures the proximity of the reconstructed seismic data to the observations. The nuclear norm constraints the reconstructed data to be a low-rank tensor. In essence, we solve the prestack seismic reconstruction problem via low-rank tensor completion. The cost function of the problem is minimized using the alternating direction method of multipliers. We present synthetic examples to illustrate the behavior of the algorithm in terms of trade-off parameters that control the quality of the reconstruction. We further illustrate the performance of the algorithm with a land data survey from Alberta, Canada.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RDA-Net: A multi-cascade network for DAS background noise attenuation;Geoenergy Science and Engineering;2024-11

2. Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data;Surveys in Geophysics;2024-07-27

3. Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

4. 5-D Seismic Data Interpolation by Continuous Representation;IEEE Transactions on Geoscience and Remote Sensing;2024

5. A Friendly Tutorial on Mean-Field Spin Glass Techniques for Non-Physicists;Foundations and Trends® in Machine Learning;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3