An alternative method for modeling close-range interactions between air guns

Author:

Barker Daniel1,Landrø Martin1

Affiliation:

1. Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

Abstract

We evaluated the problem of modeling the decay of the primary pulse amplitudes of air-gun clusters caused by the traditional assumption of sphericality. This was done by generalizing the Rayleigh equation to work with arbitrary bubble shapes, while retaining the assumption of incompressibility. To approximate the coalescence of the bubbles, we let the shapes be isosurfaces of the velocity potential. With this method, it is possible to model the firing of clustered air guns at any separation distance, including small distances that would cause two spherical bubbles to overlap. In this way, we obtained results matching the relative decay shown to be present for air-gun clusters. In addition, this method also allowed a way of calibrating the model such that effects created by the presence of the gun, compared to just a single spherical air bubble, may be estimated and included.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference14 articles.

1. Simple expression for the bubble-time period of two clustered air guns

2. Estimation of bubble time period for air-gun clusters using potential isosurfaces

3. Comparison of methods for modelling the behaviour of bubbles produced by marine seismic airguns

4. Gilmore, F. R., 1952, The growth or collapse of a spherical bubble in a viscous compressible liquid: Report no. 26-4, Hydrodynamics Laboratory, CALTEC, Pasadena, California.

5. Springer Series in Computational Mathematics;Hairer E.,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3