Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling

Author:

Mikhailov Oleg V.1,Haartsen Matthijs W.1,Toksöz M. Nafi1

Affiliation:

1. Earth Resources Laboratory, Massachusetts Institute of Technology, 42 Carleton Street, Cambridge, Massachusetts 02142

Abstract

Recent studies have demonstrated that electroseismic phenomena in porous media have the potential to detect zones of high fluid mobility and fluid chemistry contrasts in the subsurface. However, there have only been a few field studies of these phenomena since they were first observed 60 years ago. None of these studies were able to support observations with an explicit comparison to results of full waveform modeling. In this paper, we demonstrate that the electroseismic phenomena in porous media can be observed in the field, explained, and modeled numerically, yielding a good agreement between the field and the synthetic data. We first outline the design of our field experiment and describe the procedure used to reduce noise in the electroseismic data. After that, we present and interpret the field data, demonstrating how and where different electroseismic signals originated in the subsurface. Finally, we model our field experiment numerically and demonstrate that the numerical results correctly simulate arrival times, polarity, and amplitude variation with offset behavior of the electroseismic signals measured in the field.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3