AUTOMATIC CONTOURING OF FAULTED SUBSURFACES

Author:

Bolondi G.1,Rocca F.2,Zanoletti S.1

Affiliation:

1. AGIP, S. Donato Milanese, Milan, Italy

2. Consultant, Milan, Italy

Abstract

The problem of contouring a faulted surface known at randomly spaced points is analyzed and different types of solutions are proposed. The data may in fact be from a field which satisfies an elliptic partial differential equation; if the equation is harmonic, the surface corresponds to the displacement of a membrane properly raised from a horizontal plane in correspondence to the data points and cut along the faults. If the equation is biharmonic, the surface corresponds to the displacement of an elastic plate, properly riveted in correspondence to the data points and again cut along the faults. A third method analyzed, that corresponds to a family of interpolation methods, is that of two‐dimensional estimation. The technique used is that of modeling the autocovariance of the data as a function of the distance between the points only. The surface will depend upon the particular function chosen and it will tend to be peaked at the data points, if the function is peaked at the origin, and smoother if the autocovariance is smoother. When faults are present, the distance between two points is defined to be the length of the shortest linking path, not cutting a fault. In the latter case, it is shown that the set of functions eligible to be chosen as autocovariances is very limited. The first method has the useful property that maxima and minima of the surface are data points. The second method generates smoother surfaces that sometimes may overshoot. Both methods are implemented by iteratively smoothing the interpolated lattice (except in the neighborhood of data points), and therefore are rather expensive in terms of computer time. The third method is not iterative and is less expensive; since the surfaces that it generates are noisy, it may be used to supply a tentative solution to be refined with an iterated smoothing. These different techniques arc discussed in detail and some examples of their application are shown.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3