Effective reflection coefficients for curved interfaces in transversely isotropic media

Author:

Ayzenberg Milana1234,Tsvankin Ilya1234,Aizenberg Arkady1234,Ursin Bjørn1234

Affiliation:

1. Formerly Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway; presently StatoilHydro, Trondheim, Norway. .

2. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado, U.S.A. .

3. Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia. .

4. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway. .

Abstract

Plane-wave reflection coefficients (PWRCs) are routinely used in amplitude-variation-with-offset analysis and for generating boundary data in Kirchhoff modeling. However, the geometrical-seismics approximation based on PWRCs becomes inadequate in describing reflected wavefields at near- and postcritical incidence angles. Also, PWRCs are derived for plane interfaces and break down in the presence of significant reflector curvature. Here, we discuss effective reflection coefficients (ERCs) designed to overcome the limitations of PWRCs for multicomponent data from heterogeneous anisotropic media. We represent the reflected wavefield in the immediate vicinity of a curved interface by a generalized plane-wave decomposition, which approximately reduces to the conventional Weyl-type integral computed for an apparent source location. The ERC then is obtainedas the ratio of the reflected and incident wavefields at each point of the interface. To conduct diffraction modeling, we combine ERCs with the tip-wave superposition method (TWSM), extended to elastic media. This methodology is implemented for curved interfaces that separate an isotropic incidence half-space and a transversely isotropic (TI) medium with the symmetry axis orthogonal to the reflector. If the interface is plane, ERCs generally are close to the exact solution, sensitive to the anisotropy parameters and source-receiver geometry. Numerical tests demonstrate that the difference between ERCs and PWRCs for typical TI models can be significant, especially at low frequencies and in the postcritical domain. For curved interfaces, ERCs provide a practical approximate tool to compute the reflected wavefield. We analyze the dependence of ERCs on reflector shape and demonstrate their advantages over PWRCs in 3D diffraction modeling of PP and PS reflection data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3