Estimating depth of investigation in dc resistivity and IP surveys

Author:

Oldenburg Douglas W.1,Li Yaoguo1

Affiliation:

1. University of British Columbia, Department of Earth and Ocean Sciences, 129-2219 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada. Emails:

Abstract

In this paper, the term “depth of investigation” refers generically to the depth below which surface data are insensitive to the value of the physical property of the earth. Estimates of this depth for dc resistivity and induced polarization (IP) surveys are essential when interpreting models obtained from any inversion because structure beneath that depth should not be interpreted geologically. We advocate carrying out a limited exploration of model space to generate a few models that have minimum structure and that differ substantially from the final model used for interpretation. Visual assessment of these models often provides answers about existence of deeper structures. Differences between the models can be quantified into a depth of investigation (DOI) index that can be displayed with the model used for interpretation. An explicit algorithm for evaluating the DOI is presented. The DOI curves are somewhat dependent upon the parameters used to generate the different models, but the results are robust enough to provide the user with a first‐order estimate of a depth region below which the earth structure is no longer constrained by the data. This prevents overinterpretation of the inversion results. The DOI analysis reaffirms the generally accepted conclusions that different electrode array geometries have different depths of penetration. However, the differences between the inverted models for different electrode arrays are far less than differences in the pseudosection images. Field data from the Century deposit are inverted and presented with their DOI index.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3