A numerical simulation of the acoustic and elastic wavefields radiated by a source on a fluid‐filled borehole embedded in a layered medium

Author:

Bouchon Michel1

Affiliation:

1. Laboratoire de Géophysique Interne et Tectonophysique, Université Joseph Fourier, BP 53X, 38041 Grenoble, France

Abstract

We present a method of calculation to simulate the propagation of acoustic and elastic waves generated by a borehole source embedded in a layered medium. The method is formulated as a boundary element technique where the Green’s functions are calculated by the discrete wavenumber method. The restrictive assumptions are that the borehole is cylindrical and that its axis runs normal to the layer interfaces. The physics of the method rely on Huygens’s principle that states that a diffracting boundary—the borehole wall in the present case—can be represented as a distribution of secondary sources. The borehole is discretized into small cylindrical elements and each element is represented by three sources: a volume source representing the wavefield diffracted in the fluid and two surface forces that give rise to the elastic wavefield radiated outside the borehole. The strength of each source is obtained by solving the linear system of equations that describes the boundary conditions at the borehole wall. The method is used to generate synthetic acoustic logs and to investigate the wavefield radiated into the formation. The simulations considered display the Stoneley wave reflections at the bed boundaries and show the importance of the diffraction that takes place where the borehole wall intersects the layer interfaces.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3