Wave propagation effects on amplitude variation with offset measurements: A modeling study

Author:

Martinez Ruben D.1

Affiliation:

1. Halliburton Geophysical Services, One Fluor Daniel Dr., P.O. Box 5019, Sugarland, TX 77487-5019

Abstract

Wave propagation effects can significantly affect amplitude variation with offset (AVO) measurements. These effects include spreading losses, transmission losses, interbed multiples, surface multiple reflections, P‐SV mode converted waves and inelastic attenuation. Examination of prestack elastic synthetic seismograms suggests that spreading losses and the transmission losses plus compressional interbed multiples are manifest mainly as a time and offset effect on the primary reflections. The surface related multiples and the P‐SV mode‐converted waves interfere with prestack amplitudes inducing distortions in the AVO pattern. Such distortions cause large variances in AVO model fitting. Prestack viscoelastic synthetic seismograms also suggest that inelastic attenuation further complicates the AVO response because of the offset and time variant amplitude decay effects and the phase change due to dispersion. Together, all these effects severely alter AVO behavior and result in serious errors in AVO parameter estimates being made from inadequately corrected seismograms. This modeling study suggests that time and offset dependent data processing prior to AVO analysis would be necessary to correct for the wave propagation effects, via either inverse filtering or model based approaches. Comparisons between acoustic and elastic synthetic seismograms show that corrections for the wave propagation effects derived using acoustic approximations are inadequate. Corrections need to be calculated based on elastic approximations provided that the inelastic attenuation effects have been previously removed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3