Affiliation:
1. Institute of Geophysics, ETH Zurich, Switzerland..
2. BRGM, Orléans, France and Institut de Physique du Globe de Strasbourg, Strasbourg, France..
3. BRGM, Orléans, France..
Abstract
Seismic reflection imaging is a geophysical method that provides greater resolution at depth than other methods and is, therefore, the method of choice for hydrocarbon-reservoir exploration. However, seismic imaging has only sparingly been used to explore and monitor geothermal reservoirs. Yet, detailed images of reservoirs are an essential prerequisite to assess the feasibility of geothermal projects and to reduce the risk associated with expensive drilling programs. The vast experience of hydrocarbon seismic imaging has much to offer in illuminating the route toward improved seismic exploration of geothermal reservoirs — but adaptations to the geothermal problem are required. Specialized seismic acquisition and processing techniques with significant potential for the geothermal case are the use of 3D arrays and multicomponent sensors, coupled with sophisticated processing, including seismic attribute analysis, polarization filtering/migration, converted-wave processing, and the analysis of the diffracted wavefield. Furthermore, full-waveform inversion and S-wave splitting investigations potentially provide quantitative estimates of elastic parameters, from which it may be possible to infer critical geothermal properties, such as porosity and temperature.
Publisher
Society of Exploration Geophysicists
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献