Probing the subsurface karst features using time-frequency decomposition

Author:

Chen Yangkang1

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, Austin, Texas, USA..

Abstract

The high-resolution mapping of karst features is of great importance to hydrocarbon discovery and recovery in the resource exploration field. Currently, however, there are few effective methods specifically tailored for such a task. The 3D seismic data can reveal the existence of karsts to some extent, but a precise characterization cannot be obtained. I have developed an effective framework for accurately probing the subsurface karst features using a well-developed time-frequency decomposition algorithm. More specifically, I have introduced a frequency interval analysis approach for obtaining the best karsts detection result using an optimal frequency interval. A high-resolution time-frequency transform was preferred in the proposed framework to capture the inherent frequency components hidden behind the amplitude map. Although the single-frequency slice could not provide a reliable karst depiction result, the summation over the selected frequency interval could obtain a high-resolution and high-fidelity delineation of subsurface karsts. I used a publicly available 3D field seismic data set as an example to indicate the performance of the proposed method.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3