Multiparameter estimation with acoustic vertical transverse isotropic full-waveform inversion of surface seismic data

Author:

Cheng Xin1,Jiao Kun1,Sun Dong1,Vigh Denes1

Affiliation:

1. Schlumberger, Houston, Texas, USA..

Abstract

Obtaining accurate depth-migrated images demands an anisotropic representation of the earth. As a prominent tool for building high-resolution earth models, full-waveform inversion (FWI) therefore must not only account for anisotropy during wavefield simulation but also reconstruct the anisotropy fields. We have developed an inversion strategy to perform acoustic multiparameter FWI of surface seismic data in transversely isotropic media with a vertical axis of symmetry (VTI). During the early era of FWI practice, most studies only invert for the most dominant parameter, that is, the vertical velocity, and the rest of the model parameters are either ignored or kept constant. Recently, more and more emphases focus on inverting for more parameters, such as for the vertical velocity and the anisotropy fields; these are referred to as multiparameter inversion. Due to the dominant influence of the vertical velocity on the kinematics of surface seismic data, we have developed a hierarchical approach to invert for the vertical velocity first, but we kept the anisotropy fields unchanged and only switched to joint inversion of the vertical velocity and the anisotropy fields when the inversion for the vertical velocity approaches convergence. In addition, we have illustrated the necessity of incorporating the diving and reflection energy during inversion to mitigate the nonuniqueness of the solutions caused by the coupling between the vertical velocity and the anisotropy fields. We also demonstrate the success of our method for VTI FWI using synthetic and real data examples based on marine surface seismic acquisition. Our results show that incorporation of multiparameter anisotropy inversion produced better focused migration images.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3