High-resolution characterization of geologic structures using the synchrosqueezing transform

Author:

Liu Naihao1,Gao Jinghuai1,Zhang Zhuosheng2,Jiang Xiudi3,Lv Qi4

Affiliation:

1. National Engineering Laboratory for Offshore Oil Exploration, Xi’an, China and Xi’an Jiaotong University, School of Electronic and Information Engineering, Xi’an, China..

2. Xi’an Jiaotong University, School of Mathematics and Statistics, Xi’an, China..

3. CNOOC Research Institute, Geophysics Key Lab, Technology R&D Center, Beijing, China..

4. Nanjing Research Institute of Electronics Technology, Key Laboratory of Intellisense Technology, CETC, Nanjing, China..

Abstract

The main factors responsible for the nonstationarity of seismic signals are the nonstationarity of the geologic structural sequences and the complex pore structure. Time-frequency analysis can identify various frequency components of seismic data and reveal their time-variant features. Choosing a proper time-frequency decomposition algorithm is the key to analyze these nonstationarity signals and reveal the geologic information contained in the seismic data. According to the Heisenberg uncertainty principle, we cannot obtain the finest time location and the best frequency resolution at the same time, which results in the trade-off between the time resolution and the frequency resolution. For instance, the most commonly used approach is the short-time Fourier transform, in which the predefined window length limits the flexibility to adjust the temporal and spectral resolution at the same time. The continuous wavelet transform (CWT) produces an “adjustable” resolution of time-frequency map using dilation and translation of a basic wavelet. However, the CWT has limitations in dealing with fast varying instantaneous frequencies. The synchrosqueezing transform (SST) can improve the quality and readability of the time-frequency representation. We have developed a high-resolution and effective time-frequency analysis method to characterize geologic bodies contained in the seismic data. We named this method the SST, and the basic wavelet is the three-parameter wavelet (SST-TPW). The TPW is superior in time-frequency resolution than those of the Morlet and Ricker wavelets. Experiments on synthetic and field data determined its validity and effectiveness, which can be used in assisting in oil/gas reservoir identification.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3