Seismic imaging of fault damaged zone and its scaling relation with displacement

Author:

Alaei Behzad1,Torabi Anita2

Affiliation:

1. Earth Science Analytics AS, Stavanger, Norway..

2. Uni Research CIPR, Bergen, Norway..

Abstract

We have studied seismically resolved damaged zone of normal faults in siliciclastic rocks of the Norwegian continental shelf. The workflow we have developed reveals structural details of the fault damaged zone and in particular, the subsidiary synthetic faults, horsetail at the main lateral fault tips at different depths and fault bend. These subsidiary or small fault segments form an area that can be clearly followed laterally and vertically. We call this area fault damaged zone. The studied damaged zone on seismic data comprises the fault core and the fault damage zone, as defined in outcrop studies. Spectral decomposition (short-time Fourier transform for time-frequency resolution and continuous wavelet transform) was performed on the data centered around faulted intervals. The magnitude of higher frequencies was used to generate coherence attribute volumes. Coherence attributes were filtered to enhance fault images. This integrated workflow improves fault images on reflection seismic data. Our approach reveals details of damaged zone geometry and morphology, which are comparable with the outcrop studies of similar examples conducted by previous researchers or us. We have extracted the fault geometry data including the segment length, displacement, and damaged zone width at different depths. Our results show that subsidiary faults, fault bends, linkage of fault segments, and branching in the fault tip (horsetail structure or process zone) all affect the width of the damaged zone and the distribution of displacement. We have seen a distinct increase in the fault damaged zone width near the fault bend locations. The fault segment length decreases with depth toward the lower fault tip, which is below the base Cretaceous unconformity. In addition, the displacement increases below the unconformity. In general, there is a positive correlation between fault displacement and the corresponding damaged zone width measured in this study, which is in agreement with previous studies.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3