Interpretation of low-frequency distributed acoustic sensing data based on geomechanical models

Author:

Ortega Perez Ana Karen1,van der Baan Mirko2

Affiliation:

1. Formerly at University of Alberta, Department of Physics, Edmonton, Alberta, Canada; presently at Silixa LLC, Houston, Texas, USA..

2. University of Alberta, Department of Physics, Edmonton, Alberta, Canada..

Abstract

Distributed Acoustic Sensing (DAS) is a technology that enables continuous, real-time measurements along the entire length of a fiber optic cable. The low-frequency band of DAS can be used to analyze hydraulic fracture geometry and growth. In this study, the low-frequency strain waterfall plots with their corresponding pumping curves were analyzed to obtain information on fracture azimuth, propagation speed, number of fractures created in each stage, and re-stimulation of pre-existing fractures. We also use a simple geomechanical model to predict fracture growth rates while accounting for changes in treatment parameters. As expected, the hydraulic fractures principally propagate perpendicular to the treated well, that is, parallel to the direction of maximum horizontal stress. During many stages, multiple frac hits are visible indicating that multiple parallel fractures are created and/or re-opened. Secondary fractures deviate towards the heel of the well, likely due to the cumulative stress shadow caused by previous and current stages. The presence of heart-shaped tips reveals that some stress and/or material barrier is overcome by the hydraulic fracture. The lobes of the heart are best explained by the shear stresses at 45-degree angles from the fracture tip instead of the tensile stresses directly ahead of the tip. Antennas ahead of the fracture hits indicate the re-opening of pre-existing fractures. Tails in the waterfall plots provide information on the continued opening, closing, and interaction of the hydraulic fractures within the fracture domain and stage domain corridors. Analysis of the low-frequency DAS plots thus provides in-depth insights into the rock deformation and rock-fluid interaction processes occurring close to the observation well.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3