Three-dimensional distributed acoustic sensing at the Sanford Underground Research Facility

Author:

Cunningham Erin1ORCID,Lord Neal2ORCID,Fratta Dante3ORCID,Chavarria Andres4,Thurber Cliff2,Wang Herb2ORCID

Affiliation:

1. University of Wisconsin–Madison, Department of Geoscience, Madison, Wisconsin, USA. (corresponding author)

2. University of Wisconsin–Madison, Department of Geoscience, Madison, Wisconsin, USA.

3. University of Wisconsin–Madison, Department of Civil and Environmental Engineering, Geological Engineering, Madison, Wisconsin, USA.

4. Optasense, A Luna Company, Chino, California, USA.

Abstract

Distributed acoustic sensing (DAS) is a valuable tool for monitoring seismic signals as it provides high spatial and temporal resolution strain sensing along the length of a fiber-optic cable. DAS records the seismic wavefields essentially synchronously at each sensing location (i.e., sensing channel with gauge lengths) because the interrogator senses the distributed strain at the speed of light in the fiber. Unlike traditional seismic sensors, DAS has an intrinsic directional sensitivity to the axial strain change along the fiber, leading to difficulties when using standard seismic analysis and interpretations that rely on 3D particle velocity sensing. In addition, cable deployments on the surface can be dominated by high-amplitude wind or urban noise, impeding the detection of low-amplitude distant seismic sources. Here we investigate the capabilities of a unique 3D array with spiral-like portions in the Sanford Underground Research Facility (SURF), the former Homestake Mine, between 1250 m (4100 ft) and 1488 m (4850 ft) in depth for detecting local, regional, and teleseismic sources of ground vibrations. Our pilot array finds that DAS records high frequency (above 5 Hz) vibration sources well, such as mine activities and local and regional blasting events. Furthermore, our deployment method (fiber resting on the surface with rocks placed every meter or so) may contribute to low-frequency noise that contaminates the interpretation of teleseismic waves, particularly lower frequency S-wave arrivals. Nevertheless, this 3D DAS array provides significant data for future analysis as well as the basis for improving and expanding the array in SURF.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3