Deep learning with soft attention mechanism for small-scale ground roll attenuation

Author:

Yang Liuqing1ORCID,Fomel Sergey2ORCID,Wang Shoudong3ORCID,Chen Xiaohong1ORCID,Chen Yangkang2ORCID

Affiliation:

1. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China, and China University of Petroleum (Beijing), National Engineering Laboratory of Offshore Oil Exploration, Beijing, China.

2. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, Austin, Texas, USA.

3. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China, and China University of Petroleum (Beijing), National Engineering Laboratory of Offshore Oil Exploration, Beijing, China. (corresponding author)

Abstract

Ground roll is a type of coherent noise with low frequency, low velocity, and high amplitude, which masks useful signals and decreases the quality of subsequent seismic data processing. It is a challenge for traditional signal processing methods to separate useful signals effectively when the ground roll and useful reflected signals overlap seriously in the low-frequency band. We develop a supervised-learning-based framework with soft attention residual learning mechanisms for suppressing the ground roll noise. To reduce the cost of manual labeling, the 2D patching technique is used to segment large-scale seismic data into a large number of small-scale patches for training. Our network includes a multibranch attention block that uses multiple branches with different kernel sizes to extract waveform features at different scales from input noisy patches. Then, we use the soft attention mechanism to select and fuse the feature maps of different branches. Our network can achieve encouraging ground roll attenuation performance by using a small number of training samples, which is demonstrated by synthetic and field data examples. Compared with one traditional method and two advanced deep-learning frameworks, our network has better abilities in preserving low-frequency useful signals and removing ground roll.

Funder

National Key RD Program of China

Strategic Cooperation Technology Projects of CNPC and CUPB

RD Department of China National Petroleum Corporation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3