RESnet: 3D direct-current resistivity simulation using the equivalent resistor network circuit

Author:

Yang Dikun1ORCID

Affiliation:

1. Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Shenzhen, China and Southern University of Science and Technology, Department of Earth and Space Sciences, Shenzhen, China. (corresponding author)

Abstract

Thin and highly conductive objects are challenging to model in 3D direct-current (DC) problems because they often require excessive mesh refinement that leads to a significant increase in computational costs. RESistor network (RESnet) is a novel algorithm that converts any 3D geo-electric simulation to solving an equivalent 3D resistor network circuit. Two features of RESnet make it an attractive choice in the DC modeling of thin and conductive objects. First, in addition to the conductivity with units of Siemens per meter (S/m) defined at the cell centers (cell conductivity), RESnet allows conductive properties defined on mesh faces and edges as face conductivity with units of S and edge conductivity with units of S·m, respectively. Face conductivity is the thickness-integrated conductivity, which preserves the electric effect of sheet-like conductors without an explicit statement in the mesh. Similarly, edge conductivity is the product of the cross-sectional area and the intrinsic conductivity of a line-like conductive object. Modeling thin objects using face and edge conductivity can avoid extremely small mesh grids if the DC problem concerns electric field responses at a much larger scale. Second, once the original simulation is transformed into an equivalent resistor network, certain types of infrastructure, similar to above-ground metallic pipes, can be conveniently modeled by directly connecting the circuit nodes, which cannot interact with each other in conventional modeling programs. Bilingually implemented in MATLAB and Python, the algorithm has been made open source to promote wide use in academia and industry. Three examples are provided to validate its numerical accuracy, demonstrate its capability in modeling steel well casings, and indicate how it can be used to simulate the effect of complex metallic infrastructure on DC resistivity data.

Funder

Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3