Automated seismic semantic segmentation using attention U-Net

Author:

AlSalmi Haifa1ORCID,Elsheikh Ahmed H.2ORCID

Affiliation:

1. Heriot-Watt University, Edinburgh, UK and Imperial College London, Centre for Reservoir Geophysics, Resource Geophysics Academy, London, UK. (corresponding author)

2. Heriot-Watt University, Edinburgh, UK.

Abstract

Seismic facies mapping from a 3D seismic cube is of significant value to various seismic interpretation and characterization tasks. Traditional facies mapping is based on examining sedimentary environments and stratigraphic sequences that provide distinct characteristics used for facies mapping. Given the complex nature of the task, manual facies mapping is typically time and labor consuming, and the quality of the decisions varies as a function of expertise. This complexity is further increased with the ever-increasing size of 3D seismic data sets. Deep-learning methods have indicated a promising potential to perform fast, accurate, and automated segmentation tasks. We investigate the application of machine-learning techniques, particularly state-of-the-art deep convolutional neural networks (CNNs), as a framework to perform accurate automated seismic facies pixel-wise segmentation. The workflow consists of a CNN-based U-Net architecture that adopts modern computer vision techniques. We develop three major changes to the standard U-Net to boost the performance for seismic semantic segmentation tasks: (1) using residual building blocks in the encoder, (2) using transformer-like attention gates after each residual block, and (3) using frequency spectrum data, in addition to seismic amplitude, as input to the network. We indicate that this implementation achieves higher accuracy metrics outperforming recently published state-of-the-art benchmarks. The performance of our method is validated using two 3D seismic data sets, the F3 Netherlands data set and the Penobscot data set acquired offshore Nova Scotia, Canada. Experimentation involves training on a set of samples and tuning the hyperparameters, followed by quantitative evaluation of the trained network. Our workflow produces high-quality segmentation with significantly reduced artifacts, improved edge detection, and improved lateral consistency throughout the seismic survey.

Funder

PETRONAS Centre of Excellence in Subsurface Engineering and Energy Transition

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3