Characterizing landfill extent, composition, and biogeochemical activity using electrical resistivity tomography and induced polarization under varying geomembrane coverage

Author:

Ma Xinmin1ORCID,Zhang Jiaming2ORCID,Schwartz Nimrod3ORCID,Li Jing1ORCID,Chao Chen1ORCID,Meng Jian1ORCID,Mao Deqiang4ORCID

Affiliation:

1. Shandong University, School of Civil Engineering, Jinan, China.

2. Beijing Construction Engineering Group Environmental Remediation Co., Ltd., Beijing, China.

3. The Hebrew University of Jerusalem, The Institute of Environmental Sciences, Rehovot, Israel.

4. Shandong University, School of Civil Engineering, Jinan, China. (corresponding author)

Abstract

Landfill monitoring is essential for sustainable waste management and environmental protection. Geophysical methods can provide quasicontinuous spatial and temporal insights into subsurface physical properties and processes in a nonintrusive manner. The effectiveness of monitoring landfill extent, composition, and degradation under varying geomembrane coverage is evaluated using electrical resistivity tomography (ERT) and induced polarization (IP) methods. Synthetic electrical models for landfills with different geomembrane damage degrees are inverted to assess data reliability. The current conduction channels into the geomembrane during the electrical survey are quantified. Reliable electrical data are obtained when the inverted conduction channel ratio of the geomembrane (representing the damage to the geomembrane) is 51.6% or higher. This criterion is validated in a landfill experiencing aeration and anaerobic treatments. ERT and IP data capture construction and domestic waste distribution and identify the landfill boundary. The chargeability of domestic waste proves sensitive to microbial degradation activity, corroborated by characteristic ammonium and nitrate ions and a linear relation between chargeability and subsurface temperature. Temperature variations between the aerobic and anaerobic reaction zones ([Formula: see text] and [Formula: see text]) are observed to correlate with high chargeability values ([Formula: see text]), signifying the presence of biogeochemically active zones. IP excels in characterizing geomembrane-covered landfill boundaries and discerning biogeochemical activity, thereby enhancing landfill monitoring and waste management strategies.

Funder

Deqiang Mao

Publisher

Society of Exploration Geophysicists

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3