Diffusion models for multidimensional seismic noise attenuation and superresolution

Author:

Xiao Yuan1ORCID,Li Kewen2ORCID,Dou Yimin1ORCID,Li Wentao1ORCID,Yang Zhixuan1ORCID,Zhu Xinyuan1ORCID

Affiliation:

1. China University of Petroleum (East China), College of Computer Science and Technology, Qingdao, China.

2. China University of Petroleum (East China), College of Computer Science and Technology, Qingdao, China. (corresponding author)

Abstract

Seismic data quality proves pivotal to its interpretation, necessitating the reduction of noise and enhancement of resolution. Traditional and deep-learning-based solutions have achieved varying degrees of success on low-dimensional seismic data. We develop a deep generative solution for high-dimensional seismic data denoising and superresolution through the innovative application of denoising diffusion probabilistic models (DDPMs), which we refer to as MD Diffusion. MD Diffusion treats degraded seismic data as a conditional prior that guides the generative process, enhancing the capability to recover data from complex noise. By iteratively training an implicit probability model, we achieve a sampling speed 10 times faster than the original DDPM. Extensive training allows us to explicitly model complex seismic data distributions in synthetic data sets to transfer this knowledge to the process of recovering field data with unknown noise levels, thereby attenuating the noise and enhancing the resolution in an unsupervised manner. Quantitative metrics and qualitative results for 3D synthetic and field data demonstrate that MD Diffusion exhibits superior performance in high-dimensional seismic data denoising and superresolution compared with the UNet and seismic superresolution methods, especially in enhancing thin-layer structures and preserving fault features, and indicates the potential for application to higher-dimensional data.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3