Simultaneous waveform inversion of seismic-while-drilling data for P-wave velocity, density, and source parameters

Author:

Li Jinji1ORCID,Keating Scott D.2,Innanen Kristopher A.2,Shor Roman3ORCID,Kazemi Nasser4ORCID

Affiliation:

1. University of Calgary, Department of Geoscience, Calgary, Canada. (corresponding author)

2. University of Calgary, Department of Geoscience, Calgary, Canada.

3. University of Calgary, Department of Chemical and Petroleum Engineering, Calgary, Canada.

4. Université du Québec à Montréal, Department of Earth and Atmospheric Sciences, Montréal, Canada.

Abstract

Full-waveform inversion (FWI), as an optimization-based approach to estimating subsurface models, is limited by incomplete acquisition and illumination of the subsurface. The incorporation of additional data from new and independent raypaths should be expected to result in significant increase in the accuracy of FWI models. In principle, seismic-while-drilling (SWD) technology can supply these additional raypaths; however, it introduces a new suite of unknowns, namely precise source locations (i.e., drilling path), source signature, and radiation characteristics. A new FWI algorithm is formulated in which the source radiation patterns and positions join the velocity and density values of the grid cells as unknowns to be determined. Several numerical inversion experiments are then conducted with different source settings using a synthetic model. The SWD sources are supplemented by explosive sources and multicomponent receivers at the surface, simulating a conventional surface acquisition geometry. The subsurface model and SWD source properties are recovered and analyzed. The analysis is suggestive that SWD involvement can enhance the accuracy of FWI models, with varying degrees of enhancement depending on factors such as trajectory inclination, source density, and drill path extension. The impact of SWD-FWI over standard FWI is reduced when low-frequency data are missing, but improvements over the models constructed with no subsurface sources remain. This formulation permits general source information, such as position and moment tensor components, to be independently obtained. This inversion scheme may lead to a range of potential applications for which medium properties and source information are required.

Funder

Natural Sciences and Engineering Research Council of Canada

CREWES industrial sponsors

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3