Power-law frequency-dependent Q simulations in viscoacoustic media using decoupled fractional Laplacians

Author:

Zhang Yabing1ORCID,Zhu Hejun2ORCID,Liu Yang3ORCID,Chen Tongjun4ORCID

Affiliation:

1. China University of Mining and Technology, School of Resources and Geosciences, Xuzhou, China.

2. The University of Texas at Dallas, Department of Geosciences, Richardson, Texas, USA.

3. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China.

4. China University of Mining and Technology, School of Resources and Geosciences, Xuzhou, China. (corresponding author)

Abstract

Quantifying the seismic attenuation of wave propagation in the earth’s interior is essential for studying subsurface structures. Previous approaches for attenuation simulations (e.g., the standard linear solid and the fractional derivative model) are mainly based on the frequency-independent quality factor Q assumption. However, seismic attenuation in high-temperature and high-pressure regions usually exhibits power-law frequency-dependent Q characteristics. To simulate this Q effect in attenuative media, we derive a new viscoacoustic wave equation with decoupled fractional Laplacians in the time domain. Unlike the existing methods using relaxation functions to fit the power-law relationship in a specific frequency band, our equation is directly derived from the approximated complex modulus, which explicitly involves the reference quality factor and fractional exponent parameters. Furthermore, this equation contains two fractional Laplacians, which can easily simulate decoupled amplitude dissipation and phase distortion effects, making it amenable to Q-compensated reverse time migration. In the implementation, a Taylor-series expansion and a pseudospectral method are introduced to solve the fractional Laplacians with variable fractional exponents. Numerical experiments demonstrate the effectiveness of our method for power-law frequency-dependent Q simulations. As a forward-modeling engine, our derived viscoacoustic wave equation is a good supplement to the current Q simulation methods and it could be applied in many seismic applications, such as Q-compensated reverse time migration and full-waveform inversion.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3