A methodology for integrating unconventional geologic and engineering data into a geocellular model

Author:

Tamulonis Kathryn1ORCID

Affiliation:

1. Department of Geology, Allegheny College, Meadville, Pennsylvania 16335, USA.(corresponding author).

Abstract

Unconventional field development and well performance analysis encompass multiple disciplines and large data sets. Even when seismic and other data sets are not available, geologists can build geocellular models to determine factors that improve operational efficiency by incorporating well log, geosteering, stratigraphic, structural, completion, and production data. I have developed a methodology to integrate these data sets from vertical and horizontal wells to build a sequence stratigraphic and structurally framed geocellular model for an unconventional Marcellus Formation field in the Appalachian Basin, USA. The model would benefit from additional data sets to perform a rigorous investigation of performance drivers. However, the presented methodology emphasizes the value of constructing geocellular models for fields with sparse data by building a geologically detailed model in a field area without seismic and core data. I used third-order stratigraphic sequences interpreted from vertical wells and geosteering data to define model layers and then incorporate completion treating pressures and proppant delivered per stage into the model. These data were upscaled and geostatistically distributed throughout the model to visualize completion trends. Based on these results, I conclude that geologic structure and treating pressures coincide, as treating pressures increase with stage proximity to a left-lateral strike-slip fault, and completion trends vary among third-order systems tracts. Mapped completion issues are further emphasized by areas with higher model proppant values, and all treating pressure and proppant realizations for each systems tract have the greatest variance away from data points. Similar models can be built to further understand any global unconventional play, even when data are sparse, and, by doing so, geologists and engineers can (1) predict completion trends based on geology, (2) optimize efficiency in the planning and operational phases of field development, and (3) foster supportive relationships within integrated subsurface teams.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference52 articles.

1. Deep gas well encounters ultramafic kimberlite-like material in the Sauk Sequence of southeastern Ohio, USA

2. Blood, R., G. Lash, and L. Bridges, 2013, Biogenic silica in the Devonian shale succession of the Appalachian Basin, USA: AAPG Annual Convention and Exhibition, AAPG #50864.

3. Boyce, M. L., 2010, Sub-surface stratigraphy and petrophysical analysis of the middle Devonian interval of the central Appalachian Basin, West Virginia and Southwest Pennsylvania: Ph.D. dissertation, West Virginia University, 158.

4. Carbonate-shale cycles in the Middle Devonian of New York: An evaluation of models for the origin of limestones in terrigenous shelf sequences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3