Seismic structure interpretation based on machine learning: A case study in coal mining

Author:

Li Dong1,Peng Suping2,Lu Yongxu1,Guo Yinling1,Cui Xiaoqin2

Affiliation:

1. China University of Mining and Technology (Beijing), State Key Lab of Coal Resources and Safe Mining, Beijing 100083, China and China University of Mining and Technology (Beijing), College of Geoscience and Surveying Engineering, Beijing 100083, China.(corresponding author); .

2. China University of Mining and Technology (Beijing), State Key Lab of Coal Resources and Safe Mining, Beijing 100083, China..

Abstract

Interpretation of geologic structures entails ambiguity and uncertainties. It usually requires interpreter judgment and is time consuming. Deep exploitation of resources challenges the accuracy and efficiency of geologic structure interpretation. The application of machine-learning algorithms to seismic interpretation can effectively solve these problems. We analyzed the theory and applicability of five machine-learning algorithms. Seismic forward modeling is a key connection between the model and seismic response, and it can obtain seismic data of known geologic structures. Based on the modeling data, we first optimized the seismic attributes sensitive to the target geologic structure and then we verified the accuracy of the five machine-learning algorithms by the cross-checking method. In this case, the random forest algorithm had the highest accuracy. So we examined the structural interpretation method based on a random forest using the 3D seismic reflection data from coalfield exploration. The prediction effect of this interpretation workflow is verified by comparison with known geologic structures on the plane and profile. The results suggest that the random forest algorithm is feasible to indicate geologic structure interpretations in the case of collapsed column and fault structures and it can effectively improve the efficiency of seismic interpretation and its accuracy. The machine-learning-based workflow provides a new technique for seismic structure interpretation in coal mining.

Funder

National Key Research and Development Program

National Science Technology Major Project

Coal United Project of National Natural Science Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3