Incremental correlation of multiple well logs following geologically optimal neighbors

Author:

Wu Xinming1,Shi Yunzhi1,Fomel Sergey1,Li Fangyu2

Affiliation:

1. University of Texas at Austin, Austin, Texas, USA..

2. University of Oklahoma, Norman, Oklahoma, USA..

Abstract

Well-log correlation is a crucial step to construct cross sections in estimating structures between wells and building subsurface models. Manually correlating multiple logs can be highly subjective and labor intensive. We have developed a weighted incremental correlation method to efficiently correlate multiple well logs following a geologically optimal path. In this method, we first automatically compute an optimal path that starts with longer logs and follows geologically continuous structures. Then, we use the dynamic warping technique to sequentially correlate the logs following the path. To avoid potential error propagation with the path, we modify the dynamic warping algorithm to use all the previously correlated logs as references to correlate the current log in the path. During the sequential correlations, we compute the geologic distances between the current log and all of the reference logs. Such distances are proportional to Euclidean distances, but they increase dramatically across discontinuous structures such as faults and unconformities that separate the current log from the reference logs. We also compute correlation confidences to provide quantitative quality control of the correlation results. We use the geologic distances and correlation confidences to weight the references in correlating the current log. By using this weighted incremental correlation method, each log is optimally correlated with all the logs that are geologically closer and are ordered with higher priorities in the path. Hundreds of well logs from the Teapot Dome survey demonstrate the efficiency and robustness of the method.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3