An integrated high-resolution geophysical and geologic visualization of a Lake Bonneville shoreline deposit (Utah, USA)

Author:

Smith Katelynn M.1,McBride John H.1,Nelson Stephen T.1,Keach R. William1,Hudson Samuel M.1,Tingey David G.1,Rey Kevin A.1,Carling Gregory T.1

Affiliation:

1. Brigham Young University, Department of Geological Sciences, P. O. Box 24606, Provo, Utah 84602, USA.(corresponding author); .

Abstract

Pilot Valley, located in the eastern Basin and Range, Western Utah, USA, contains numerous shorelines and depositional remnants of Late Pleistocene Lake Bonneville. These remnants present excellent ground-penetrating radar (GPR) targets due to their coherent stratification, low-clay, low-salinity, and low moisture content. Three-dimensional GPR imaging can resolve fine-scale stratigraphy of these deposits down to a few centimeters, and when combined with detailed outcrop characterization, it provides an in-depth look at the architecture of these deposits. On the western side of Pilot Valley, a well-preserved late Pleistocene gravel bar records shoreline depositional processes associated with the Provo (or just post-Provo) shoreline period. GPR data, measured stratigraphic sections, cores, paleontological sampling for paleoecology and radiocarbon dating, and mineralogical analysis permit a detailed reconstruction of the depositional environment of this well-exposed prograding gravel bar. Contrary to other described Bonneville shoreline deposits, calibrated radiocarbon ages ranging from 16.5 to 14.3 (ka, BP) indicate that the bar was stable and active during an overall regressive stage of the lake, as it dropped from the Provo shoreline (or just post-Provo level). Our study provides a model for an ancient pluvial lakeshore depositional environment in the Basin and Range province and suggests that stable, progradational bedforms common to the various stages of Lake Bonneville are likely not all associated with periods of shoreline stability, as is commonly assumed. The high-resolution GPR visualization demonstrates the high degree of compartmentalization possible for a potential subsurface reservoir target based on ancient shoreline sedimentary facies.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3