Spectral decomposition of seismic data with continuous-wavelet transform

Author:

Sinha Satish1,Routh Partha S.2,Anno Phil D.3,Castagna John P.1

Affiliation:

1. University of Oklahoma, School of Geology and Geophysics, 100 E. Boyd St., 810 SEC, Norman, Oklahoma 73019..

2. Boise State University, Department of Geosciences, Boise, Idaho 83725..

3. ConocoPhillips, Seismic Imaging and Prediction, 600 N. Dairy Ashford, Houston, Texas 77252-2197..

Abstract

This paper presents a new methodology for computing a time-frequency map for nonstationary signals using the continuous-wavelet transform (CWT). The conventional method of producing a time-frequency map using the short time Fourier transform (STFT) limits time-frequency resolution by a predefined window length. In contrast, the CWT method does not require preselecting a window length and does not have a fixed time-frequency resolution over the time-frequency space. CWT uses dilation and translation of a wavelet to produce a time-scale map. A single scale encompasses a frequency band and is inversely proportional to the time support of the dilated wavelet. Previous workers have converted a time-scale map into a time-frequency map by taking the center frequencies of each scale. We transform the time-scale map by taking the Fourier transform of the inverse CWT to produce a time-frequency map. Thus, a time-scale map is converted into a time-frequency map in which the amplitudes of individual frequencies rather than frequency bands are represented. We refer to such a map as the time-frequency CWT (TFCWT). We validate our approach with a nonstationary synthetic example and compare the results with the STFT and a typical CWT spectrum. Two field examples illustrate that the TFCWT potentially can be used to detect frequency shadows caused by hydrocarbons and to identify subtle stratigraphic features for reservoir characterization.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 422 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3