Affiliation:
1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108
Abstract
In boreholes, temperatures vary and to extract hydrocarbon saturation from conductivity measurements, the influence of temperature on water and rock conductivities must be accounted for. The mobility [Formula: see text] of the counter‐ions due to clays and the electrical conductivity of pore‐filling brine show large changes with variation in temperature, whereas the microgeometry of the pore space exhibits negligible change. Using this idea, the temperature dependence of [Formula: see text] is extracted using data on dc electrical conductivity of shaly sands (σ) containing varying amounts of clay. The mobility of [Formula: see text] counter‐ions is found to vary approximately linearly with temperature. This explicit relationship is tested by comparing the predicted temperature dependence against the measured temperature dependence of conductivity of a set of rocks with high and low clay content. While the rock conductivity shows a large temperature dependence, the resistivity index is less sensitive to temperature. An approximate formula, which is superior to Arps’s formula, for water conductivity as a function of temperature is obtained.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
162 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献