Velocity estimation by image-focusing analysis

Author:

Biondi Biondo1

Affiliation:

1. Stanford University, Geophysics Department, Stanford Exploration Project, Stanford, California, U.S.A. .

Abstract

Migration velocity can be estimated from seismic data by analyzing, focusing, and defocusing of residual-migrated images. The accuracy of these velocity estimates is limited by the inherent ambiguity between velocity and reflector curvature. However, velocity resolution improves when reflectors with different curvatures are present. Image focusing is measured by evaluating coherency across structural dips, in addition to coherency across aperture/azimuth angles. The inherent ambiguity between velocity and reflector curvature is directly tackled by introducing a curvature correction into the computation of the semblance functional that estimates image coherency. The resulting velocity estimator provides velocity estimates that are (1) unbiased by reflector curvature and (2) consistent with the velocity information that is routinely obtained by measuring coherency over aperture/azimuth angles. Applications to a 2D synthetic prestack data set and a 2D field prestack data set confirm that the proposed method provides consistent and unbiased velocity information. They also suggest that velocity estimates based on the new image-focusing semblance may be more robust and have higher resolution than estimates based on conventional semblance functionals. Applying the proposed method to zero-offset field data recorded in New York Harbor yields a velocity function that is consistent with available geologic information and clearly improves the focusing of the reflectors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3