Quantitative analysis of coal-bed methane components by downhole laser Raman spectroscopy

Author:

Wang Heng1ORCID,Zhou Lifa1,Yuxia Wang1

Affiliation:

1. Northwest University, Xi’an, China and Northwest University, State Key Laboratory of Continental Dynamics, Xi’an 710069, China.(corresponding author); .

Abstract

Laser Raman spectroscopy can be used to acquire the unique fingerprint of a specific molecule, and it is widely used to identify substances and to study the spectral line characteristics of molecular structures. The measurement of coalbed methane (CBM) content is essential in the exploration and development of CBM fields for optimizing the fracture design. For this purpose, laser Raman spectroscopy can be extremely beneficial because it detects the gas content rapidly and accurately. Moreover, conventional gas content testing methods are laborious, time-intensive, and expensive, and they yield inaccurate results. Therefore, we have integrated a laser Raman spectroscopy system with coiled tubing (CT) equipment for downhole deployment in gas wells to accurately determine the CBM content in situ. The developed system can directly determine the CBM content at a specific location in the target layer. The trace test characteristics enable this system to rapidly detect downhole gas components and contents. The real-time detection data are transmitted via a cable to a computer on the surface and are processed using a baseline correction algorithm and a data enhancement algorithm. The Fourier transform and the wavelet transform are used to identify the Raman spectral lines, whereas analysis of Raman spectra is used to determine the CBM content. By using this equipment, we can shorten the cycle of depressurization, drainage, and recovery processes from multiple days to just a few hours. Furthermore, the integrated laser Raman spectroscopy-CT system enables a flexible operation and possesses strong site operability, making it suitable for complex and high-risk wells.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3