Interpretation of vintage 2D seismic reflection data along the Austrian-Hungarian border: Subsurface expression of the Rechnitz metamorphic core complex

Author:

Tari Gabor C.1,Gjerazi Ingrid1,Grasemann Bernhard2ORCID

Affiliation:

1. OMV Exploration and Production GmbH, Trabrennstrasse 6-8, Vienna A-1020, Austria.(corresponding author); .

2. University of Vienna, Department of Geology, Althanstrasse 14, Vienna 1090, Austria..

Abstract

In the border zone between Austria and Hungary, the Miocene extension of the Pannonian Basin was characterized by extreme, large-magnitude upper crustal extension accommodated along low-angle detachment faults. Although some of these prominent normal faults have already been described using 2D seismic data sets and well data on the Hungarian side, we offer the first systematic interpretation using the Austrian and Hungarian vintage seismic data sets acquired in the 1970s and 1980s. The refinement of the previously proposed metamorphic core complex (MCC) style, east-northeast–west-southwest-trending very high-strain extension provides a modern understanding of back-arc extension in this part of the Pannonian Basin system as the result of the collapse of the Alpine orogen. Although previous interpretations could not achieve the subsurface correlation of major structural elements across the border, we did systematically map these for the first time. Numerous exploration wells, drilled on both sides of the border, were integrated with reflection seismic data to differentiate between the lower versus upper plates of the major low-angle detachment faults, including the largest one responsible for the formation of the Rechnitz MCC. Based on our new interpretation, the regionally mapped Rechnitz detachment fault has an unexpectedly large subsurface extent, on the order of 1000 km2. Moreover, the unusually large number of industry 2D seismic profiles (approximately 50) used to map this and other prominent faults, in the Austrian and Hungarian sides, makes the Rechnitz MCC possibly the best constrained one in the world in terms of subsurface definition by reflection seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3