Which seismic attributes are best for subtle fault detection?

Author:

Hussein Marwa1ORCID,Stewart Robert R.2,Wu Jonny2

Affiliation:

1. Formerly University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77204, USA; presently Ain Shams University, Department of Geophysics, Cairo 11566, Egypt.(corresponding author).

2. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77204, USA..

Abstract

Subtle fault detection plays a vital role in reservoir development studies because faults may form baffles or conduits that significantly control how a petroleum reservoir is swept. Small-throw faults are often overlooked in interpreting seismic amplitude data. However, seismic attributes can aid in mapping small faults. Over the years, dozens of seismic attributes have been developed that offer additional features for interpreters with associated caveats. Using the Maui 3D seismic data acquired in the Offshore Taranaki Basin, New Zealand, we have generated seismic attributes that are typically useful for fault detection. We find that multiattribute analysis provides greater geologic information than would be obtained by the analysis of individual attribute volumes. We extract the geologic content of multiple attributes in two ways: interactive corendering of different seismic attributes and the unsupervised machine learning algorithm self-organizing maps (SOM). Corendering seismic attributes that are mathematically independent but geologically interrelated provides a well-integrated structural image. We suggest eight combinations of 16 various attributes useful for a human interpreter with interest in fault and fracture detection. Current interpretation display capabilities constrain corendering to only four attribute volumes. Therefore, we use principal component analysis and SOM techniques to efficiently integrate the geologic information contained within many attributes. This approach gathers the data into one classification volume based on the interrelationships between seismic attributes. We show that our resulting SOM classification volume better highlights small faults that are difficult to image using conventional seismic interpretation techniques. We find that SOM works best when a fault exhibits anomalous features for multiple attributes within the same voxel. However, human interpreters are more adept at recognizing spatial patterns within various attributes and can place them in an appropriate geologic context.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3